Russian Trading System

DSServer Library of COM-objects (RTSOnlineX)

RTS Plaza Online

API Description

Document Requisites

Author(s):

Y.Somov, L.Pustoutova, V.Kopylov, M.Shotin
Trading system version:

9.6
Module version:

1.96.000
Date:

17.07.12
Company:

Moscow Exchange
Contents

1Document Requisites

31.
Revisions

32.
General Description

33.
Feature-sets

34.
DSServer Objects

34.1.
Connection, ConnectionDO

44.1.1.
Properties

44.1.2.
Methods

64.1.3.
Events

74.1.4.
Events When Establishing/ Breaking Connection to the TS

84.2.
MsgOrder, MsgQuoteS, MsgTrade, MsgTradeSingle MsgAssetOut, MsgRepoQuotes, MsgLimit

84.2.1.
Properties

84.2.2.
Methods

104.2.3.
Using messages objects

114.3.
Online, OnlineDO.

114.3.1.
Properties

124.3.2.
Methods

124.3.3.
Events

144.3.4.
Using Online object

144.3.5.
Notes of the IDataSource Interface implementation

144.4.
Scheme, SchemeDO

144.4.1.
Methods

154.4.2.
Events

154.4.3.
Using Scheme object

155.
References

1.
Revisions

	27.12.2002
	Added SetCryptoSystemSignParamEx method.

	27.02.2004
	Added SendXML method.

	29.06.2004
	Added SendExt universal method.

Changed data type of SendSignedXML and SendXML methods.

Added A Application “Trading System Answer Codes”.

	13.08.2004
	A Application “Trading System Answer Codes” transferred to the document TS_RTSOnline_API_Public.doc.

	07.11.2005
	Changes regarding the message “quote of the classic market” being added to the library

	31.03.2007

23.06.2012
	Changes regarding the message “quote for the REPO operation” being added to the library

Added info about MsgLimit and MsgTradeSingle messages.

2. General Description

The library of COM-objects RTSOnX[nn].dll is entered into the registry under the name of DSServer. It includes the following objects:

Connection – provides connection to the RTS Trading System through RTSComm which is required for the work with the other objects of the library.

Online – provides access to the Trading System database tables.

Scheme – provides access to the scheme of the Trading System database.

Sending messages to the Trading System – allows a market member to send signed messages to the TS.

The Connection, Online and Scheme objects have OLE controls which make it possible to use these objects in visual development environments such as PowerBuilder or Visual Basic. Outwardly they differ from the above-mentioned objects only in the DO suffix in the name (ConnectionDO, OnlineDO, SchemeDO respectively). Internally they differ in the presence of additional interfaces that are necessary to establish communication between object and IDE.

Besides the DSServer library has a number of constants required in the work with the Trading System and in determining the values of data fields.

3. Feature-sets

The DSServer Library has different versions. The file name is RTSOnX[nn].dll, where nn is a feature-set:

00 Crypto System Apartment Minimum Messages

02 Crypto System IDataSource Apartment Minimum Messages

04 Crypto System Free Threading Minimum Messages

06 Crypto System IDataSource Free Threading Minimum Messages

where

Crypto System – support of “Verba” cryptosystem

IDataSource – support of the IDataSource interface switched on

Apartment – the library is using COM Apartment model

Free Threading – the library is using COM Free-threading model

Minimum Messages – includes a set of messages:

MsgAssetOut (withdrawal of assets from the settlement account)

MsgOrder (order)

MsgQuoteS (order of the classic market)

MsgTrade (trade)

MsgRepoQuotes (quote for the REPO operation)

4. DSServer Objects

4.1. Connection, ConnectionDO

This object is used to establish connection to the Trading System which is required for the work of the other objects of the DSServer library.

 To connect to the TS and get access to the data you need to have a login and password in the TS and to create the required initialization files. Then create a Connection object or ConnectionDO object (visual object (control)) and call the Open method. If the connection is established the user process will start receiving events. When the work is finished call the Close method.

Ini-file setup required for establishing connection to Trading System described in TS_RTSOnline_API_public.doc, section 4.

If you need to send digitally signed messages, initialize the cryptosystem using the OpenCryptoSystem or OpenCryptoSystemEx methods. The CloseCryptoSystem method is used to close the cryptosystem.

For a more detailed description of these methods read further:

4.1.1. Properties

IniFile

BSTR IniFile

Name and path of the initialization file of the RTS communication protocol

Username

BSTR Username

User name in form FIRM@USER. Required only in autonomous mode.

Password

BSTR Password

User’s password. Required only off-line.

EXTPassword

BSTR ExtraPassword

User’s extra password. Required only off-line.

4.1.2. Methods

Open

VARIANT_BOOL Open(
[optional] BSTR IniFile,
[optional] BSTR Username,
[optional] BSTR Password
[optional] BSTR ExtraPassword);

Function

Opens connection to the TS using the parameters indicated in the file of the RTS communication protocol setting

Parameters

If the parameters are not set, the values of the respective properties are used.

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method. To ensure the connection is established and fully functional wait for three events netintegrityok (connection with the TS root server is established), loginok (authentication in the TS has been performed) and dsconnected (connection with the dataserver (rtsds.exe) is established).

Close

VARIANT_BOOL Close();

Function

Closes the connection which has been opened.

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method. To check whether the connection has been successfully closed it is necessary to process the appropriate events.

OpenCryptoSystem

VARIANT_BOOL OpenCryptoSystem(
[in] BSTR KeyDir,
[in] BSTR CertId,
[in] BSTR FromAddress,
[out] int* pCryptoRes);

Function

Initializes the cryptosystem

Parameters

KeyDir
is a path to the disk or catalog with the public key information;

CertId
is an identifier of the certificate of the public signature key;

FromAddress
–is an address in the RTS electronic documents interchange system (EDI). At present a user with the name FIRM@USER gets an EDI address of the EMAIL@FIRM.USER type;

pCryptoRes
is a result of the initialization of the cryptosystem.

The pCryptoRes parameter can assume the following values:

· CSERR_CANT_LOAD_VERBA is an error in the Verba driver loading (for example, the driver is not installed);

· CSERR_CANT_INIT_SIGN is an error in the initialixation of the electronic digital signature (for example, the key floppy disk is not inserted in the disk drive);

· CSERR_UNKNOWN is an unknown error;

· CSERR_OK means that the initialization has been effective.

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method.

OpenCryptoSystemEX

VARIANT_BOOL OpenCryptoSystemEx(
[in] BSTR KeyDir,
[in] BSTR CertId,
[in] BSTR KeyId,
[in] BSTR FromAddress,
[out] long* pCryptoRes);

Function

This method allows the user to launch several gateways on one computer which use their own signature keys.

When using OpenCryptoSystem or KeyId = 0, the first loaded key is used for the signature.

Parameters

KeyDir
is a path to the disk or catalog with the key information;

CertId
 is the certificate identifier of the public signature key;

KeyId
is an extra parameter containing the number of the signature key. It is a 12-character line in the Sign column of the asrkeyw program. All the characters (including zeros at the beginning) are significant;

FromAddress
is an address in the RTS EDI;

pCryptoRes
is a result of the initialization of the cryptosystem;

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method.

SETCRYPTOSYSTEMSIGNPARAMEX

VARIANT_BOOL SetCryptoSystemSignParamEx([in] BSTR CertId, [in] BSTR KeyId, [in] BSTR FromAddress, [out] long* pCryptoRes);

Function

This method expands the possibility to launch several gateways on one computer which use their own signature keys. The user can apply this method after the initialization of the cryptosystem setting parameters that are different from the parameters used in the course of the initialization. This method influences all the following messages. It can be used an unlimited number of times.

Parameters

· CertId is a certificate identifier of the public signature key;

· KeyId is an extra parameter containing the number of the signature key. It is a 12-character line in the Sign column of the asrkeyw program. All the characters (including zeros at the beginning) are significant;

· FromAddress is an address in the RTS EDI;

· pCryptoRes is a result of the initialization of the cryptosystem;

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method.

CloseCryptoSystem

VARIANT_BOOL CloseCryptoSystem([out] long* pCryptoRes);

Function

Closes the cryptosystem. Spares the resources, used by the OpenCryptoSystem methods.

Parameters

pCryptoRes is a result of the initialization of the cryptosystem

The pCryptoRes parameter can assume the following values:

· CSERR_NOT_INITED means that the cryptosystem is not initializes;

· CSERR_UNKNOWN is an unknown error;

· CSERR_OK means that the cryptosystem has been successfully closed.

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method.

TESTCryptoSystem

VARIANT_BOOL TestCryptoSystem(

[out] BSTR* pDesc,

[out] long* pCryptoRes);

Function

Can be used to test the cryptosystem setup on the computer of the gateway (similarly to the Test Verba command in the RTS Plaza Workstation).

Parameters
pDesc is the "Test OK" returned row (success) or an error description (error).

CryptoRes – result of the initialization of the cryptosystem.

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method.

GETTIMEDELTA

long GetTimeDelta();

Function

Returns the difference between the time of the Trading System and the local computer in seconds. A correct result is returned only upon the receipt of the WatchDogTimeSync event.
4.1.3. Events

Ping

void Ping(int IDConnect);

Control timer message which comes twice a second in the absence of other messages. This message is generated by the communication library of the application and starts to come after its successful initialization. But it does not mean that there is a connection to other TS modules.

Here and further in this section: IDConnect – connection identifier

LoginOk

void LoginOk(int IDConnect);

Authentication in the TS has been successfully completed.

LoginFailed

void LoginFailed(int IDConnect);

Error of authentication in the TS

NetIntegrityOk

void NetIntegrityOk(int IDConnect);

Connection to the Ts root server is established.

NetIntegrityLost

void NetIntegrityLost(int IDConnect);

Connection to the TS root server is broken.

DSConnected

void DSConnected(int IDConnect);

Connection to the DataServer module is established.

DSDisconnected

void DSDisconnected(int IDConnect);

Connection to the DataServer module is broken.

ERROR

void Error(int IDConnect, BSTR Description);

Connection parameters error message, Description – additional information.

UserConnected

void UserConnected(int IDConnect);

Connection with the user’s process is established.

UserDisconnected

void UserDisconnected(int IDConnect);

Connection with the user’s process is broken.

ServiceConnected

void ServiceConnected(int IDConnect);

Connection to the RTSComm service is established (for example, to the DataServer module).

ConnectFailed

void ConnectFailed(int IDConnect);

Connection is not established.

WATCHDOGTIMESYNC

void WatchdogTimeSynch(int IDConnect);

The WatchDog module has sent a message with the time stamp of the Trading System. Upon the receipt of such a message the application can calculate the difference between the local time and the time of the Trading System with the help of GetTimeDelta call. The WatchDog module sends out time stamps once a minute.

BeginTrans

void BeginTrans(int IDConnect);

Notice about the beginning of a transaction sent by the DataServer module.

Commit

void Commit(int IDConnect);

Notice about the transaction commitment sent by the DataServer module.

Rollback

void Rollback(int IDConnect);

Rollback reports errors in the DataServer work.

Note:
BeginTrans, Commit and Rollback events are sent by the DataServer module, if its ini-file has an option: [Online] send_txn_events = 1
4.1.4. Events When Establishing/ Breaking Connection to the TS

After a successful call of the Open method, the application communication library tries to carry out the following operations:

1. Open a connection at the level of the transport protocol – TCP or RPC. In case of failure the user gets a ConnectFailed notice. RTSComm enters the code and description of the Win32 error in the program log. If the PERMANENTLOGIN=0 option is indicated in the COMMSERV section of the program ini-file, there are no more attempts to establish connection, to reopen the connection call Connection->Close, then again Connection->Open. If not, the library will try to open a connection in a cycle till it succeeds. The use of the PERMANENTLOGIN=0 option is not recommended.

2. If a connection is established at the transport level, the authentication on the server is performed. If the authentication is successful the user gets a LoginOk notice, in case of failure – a LoginFailed notice. The cause of the error is also recorded in the program log. Further attempts to login are carried out as in the case of ConnectFailed.

Note:
The above-mentioned notices refer only to the connection between the application using RTSComm and the superior/upper server. In other words, LoginOk means that the application has got a login from the dataserver and connected to it, but does not mean that there has been a login in the RTS TS.

3. After a login notice the superior/upper server sends a notice about the status of the connection to the root server of the Trading System - NetIntegrityOk or NetIntegrityLost. The NetIntegrityOk notice won’t be sent regardless the connection pattern if there has been no login in the TS.

4. Upon the receipt of the login notice the DSServer library tries to establish connection to the dataserver and sends a DSConnected notice if the server has been found.

5. When the connection to the higher server is broken Disconnected, DSDisconnected and NetIntegrityLost notices come in a random order. Upon the arrival of the Disconnected notice the other notices are deemed to have also arrived.

6. The RTSOnX processes disconnection like in the cases with ConnectFailed and LoginFailed.

While working you might receive NetIntegrityOk/NetIntegrityLost and DSConnected/DSDisconnected notices.

The DSDisconnected status means that there is no connection to the dataserver and therefore Online-connections cannot be opened.

The NetIntegrityLost status means that, first, it is no use sending orders or other messages to trading system and, second, the data received through Online-connection does not reflect the situation in the TS.

4.2. MsgOrder, MsgQuoteS, MsgTrade, MsgTradeSingle MsgAssetOut, MsgRepoQuotes, MsgLimit
MsgOrder is used for adding, changing and deleting orders in the TS.

MsgQuoteS is used for adding, changing and deleting quotes of the classic market in the TS.

MsgTrade is used to send trade reports to the TS.

MsgTradeSingle is used to send cross-trade reports (with the confirmation from a counterpart).

MsgAssetOut is used to send the information on the withdrawal of assets on T+0 market.

MsgRepoQuotes is used for adding, changing and deleting quotes for the REPO operation in the TS.

MsgLimit is used for adding and editing trade limits for counterparts.

4.2.1. Properties

See the description of the fields of appropriate messages in the “Application of RTS Plaza Online libraries” document, messages : MsgOrder, MsgTrade, MsgAssetOut (file - TS_RTSOnline_API_Public.doc).

All the properties are of the VARIANT (VT_BSTR) type, numerical values and time/date can be indicated by a row in the format indicated in the message description, or by a variable of the appropriate VARIANT-type.

4.2.2. Methods

SendeXT

VARIANT_BOOL SendExt(
[in] BOOL isSigned,
[in] BOOL isXML,
[out] BSTR* pDesc,
[out] long* pSeverity,
[out] long* pId,
[out] VARIANT* pTime,
[out] long* pCode_page,

[out] unsigned short* reply_num,
[out] long* pCryptoRes,
[out] VARIANT* pUID);

Function

Signs and sends a message into the Trading System.

Parameters

isSigned is the flag showing that the message is to be sighed;

isXML is the flag showing that the message must be in the XML format;

pDesc is the Trading System response;

pSeverity is the error level returned by the Trading System:

 - 0 – no error,

· 64 - USER_WARNING,

· 128 - USER_ERROR,

· 192 - SYSTEM_WARNING,

· 255 - SYSTEM_ERROR.

pId is a message identifier in the operation of addition (in the current version 0);

pTime is a message processing time;

pCode_page is a code page of the Trading System response;

reply_num is the code of the Trading System response (for the description of response codes see the TS_RTSOnline_API_Public.doc document);

 [out] int* pCryptoRes is the cryptosystem error code;

 pUID is a message universal identifier.

The pCryptoRes parameter can assume the following values:

· CSERR_OK
means that signing is successfully completed;

· CSERR_NOT_INITED
means that the cryptosystem is not initialized;

· CSERR_NO_SPACE_FOR_BODY means that the memory is not enough to generate a signed message;

· CSERR_SIGN_ERROR
is a signing error;

· CSERR_UNKNOWN is an unknown error..

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method.

Note: TRUE means that a message has been successfully signed and delivered to the TS. But it does not mean that the TS has added/changed/deleted the record. If the record fields do not conform to the rules of business logic, the TS will return *pSeverity != 0. Regardless the result of the operation the pDesc variable contains a response of the TS in a “verbal” form.

SendSignedXML

VARIANT_BOOL SendSignedXML(
[out] BSTR* pDesc,
[out] long* pSeverity,
[out] long* pId,
[out] VARIANT* pTime,
[out] long* pCode_page,
[out] long* pCryptoRes,
[out] VARIANT* pUID);

Function

Signs and sends a message into the Trading System.

Parameters

pDesc is a Trading System response;

pSeverity is the error level returned by the Trading System:

· 0 – no error,

· 64 - USER_WARNING,

· 128 - USER_ERROR,

· 192 - SYSTEM_WARNING,

· 255 - SYSTEM_ERROR.

pId is a message identifier in the operation of addition (in the current version 0);

pTime is message processing time;

pCode_page is the code page of the Trading System response;

 [out] int* pCryptoRes is the cryptosystem error code;

pUID is the message universal identifier.

The pCryptoRes parameter can assume the following values:

· CSERR_OK
means that the signing is successfully completed;

· CSERR_NOT_INITED
means that the cryptosystem is not initialized;

· CSERR_NO_SPACE_FOR_BODY
means that the memory is not enough to generate a signed message;

· CSERR_SIGN_ERROR
is a sign error;

· CSERR_UNKNOWN is an unknown error.

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method.

Note: TRUE means that a message has been successfully signed and delivered to the TS. But it does not mean that the TS has added/changed/deleted the record. If the record fields do not conform to the rules of business logic, the TS will return *pSeverity != 0. Regardless the result of the operation the pDesc variable contains a response of the TS in a “verbal” form.

SendXML

VARIANT_BOOL SendXML(
[out] BSTR* pDesc,
[out] long* pSeverity,
[out] long* pId,
[out] VARIANT* pTime,
[out] long* pCode_page);

Function

Sends a message into the Trading System.

Parameters

pDesc is a Trading System response;

pSeverity is the error level returned by the Trading System:

 - 0 – no error,

· 64 - USER_WARNING,

· 128 - USER_ERROR,

· 192 - SYSTEM_WARNING,

· 255 - SYSTEM_ERROR.

pId is a message identifier in the operation of addition (in the current version 0);

pTime is message processing time;

pCode_page is the code page of the Trading System response.

4.2.3. Using messages objects

To start sending signed messages (orders, reports etc.) to the TS, initialize the cryptosystem by calling the appropriate method of the Connection object. When all messages are sent the cryptosystem should be stopped.

The procedure of sending a signed message to the TS comprises the following stages:

1. Establishing connection to the TS with the help of the Connection object and initialization of the cryptosystem;

2. Creation of an appropriate object (MsgOrder, MsgTrade, MsgAssetOut);

3. Filling in the message fields according to the business logic of an application program and the TS rules;

4. Sending the message to the TS with the help of the SendSignedXML method;

5. Analysis of the return code, error level and the TS response. Processing the message identifier if the method has been successfully performed;

6. Deleting of unnecessary objects and closing the connection in some cases.

Example of a customer transaction report written in Visual Basic (for a signed message):

Msg5.Msg_action = Msg_action
Msg5.id = Me.txtId.Text
Msg5.Type = Asc("B") ' Transaction type - bilateral
Msg5.Action = Asc("S") ' P-purchase, S - sale
Msg5.IssueID = 451
Msg5.Issue_name = "PYRAG"
Msg5.MyID = 505 ' 503
Msg5.My_name = "TRN4M"
Msg5.ContraID = 505 '
Msg5.Price = "6.6"
Msg5.Qty = 100
Msg5.Volume = "660"
Msg5.Price_currency = "RUR"
Msg5.Payment_currency = "RUR"
Msg5.Delivery_date = "2000/06/09"
Msg5.Clear = 4
Msg5.Dcc = "GTS"
Msg5.Memo = Me.txtMemo.Text
Msg5.Settl_pair = "trn4mk1"

res = Msg5.SendSignedXML(desc, s, id, t, cp, res2, UID)

Msg5.Action = Asc("P")
Msg5.Settl_pair = "trn4mk2"

res = Msg5.SendSignedXML(desc, s, id, t, cp, res2, UID)

4.3. Online, OnlineDO.

These objects allow the user to connect to the TS database tables to receive data in the on-line mode and to fulfill the queries.

4.3.1. Properties

ConnectionType

ConnectionType ConnectionType

Connection type:

· RTSONL_CTYPE_EMPTY
is a default value (RTSONL_DYNAMIC is used).

· RTSONL_DYNAMIC is a dynamic connection (allows to get data changes in the on-line mode).

· RTSONL_STATIC is a static connection (allows to get a snapshot of the data in TS database table at the moment of the query).

TableName

BSTR TableName

Table name in the TS database.

FieldNames

BSTR FieldNames

Names of the requested fields or the symbol «*» to get all the fields.

KeyField

BSTR KeyField

Key fields. Mandatory field! Appendix 2 contains a list of possible values of this property for each table.

FilterMin

BSTR FilterMin

Minimum value for filtering by the key field on the TS side.

FilterMax

BSTR FilterMax

Maximum value for filtration by the key field on the TS side.

Sort

Sort Sort

Type of record sorting on the TS side:

· RTSONL_SORT_EMPTY
is sorting by default (RTSONL_FORWARD is used);

· RTSONL_FORWARD
is ascending sorting;

· RTSONL_BACKWARD
is descending sorting.

MaxRecords

int MaxRecords

Maximum number of the records received (input buffer size). When the buffer is overflown, new records are ignored. Works only when the RTSOnX[nn].dll version is applied with the IDataSource interface support.

SortClause

BSTR SortClause

Sorting criteria in the data source (in a user process). A list of fields through a comma and indication of the type of sorting (ASC, DESC) according to the SQL syntax (ORDER BY clause). Works only when the RTSOnX[nn].dll version is applied with the IDataSource interface support.

FilterClause

BSTR FilterClause

Criteria for filtering in the data source (in a user process) according to the SQL syntax (WHERE clause). Works only when the RTSOnX[nn].dll version is applied with the IDataSource interface support.

4.3.2. Methods

Open

int Open(
[optional, defaultvalue(RTSONL_CTYPE_EMPTY)] ConnectionType ConnectionType,
[optional] BSTR TableName,
[optional] BSTR FieldNames,
[optional] BSTR KeyField,
[optional] BSTR FilterMin,
[optional] BSTR FilterMax,
[optional, defaultvalue(RTSONL_SORT_EMPTY)] Sort Sort);

Function

Opens a connection to a table of the TS database.

Parameters

If the parameters are not set, the values of the appropriate properties are used.

Returned Value

Returns the identifier of the connection to the table or 0 if the connection is not established. When the table is opened the user’s program receives all table records which conform to the criteria indicated in the appropriate properties and parameters.

Close

VARIANT_BOOL Close(int IDRtsOnlConnect);

Function

Close the connection to a table of the TS database.

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method.

GetDataMember

VARIANT* GetDataMember(BSTR DataMember);

Function

Returns an reference to a recordset in the datasource (IDispatch interface). Can be used to transfer the received data to another object (for example, Microsoft DBGrid).

Parameters

BSTR DataMember – name of the dataset in the datasource.

Returned value

Returns reference to a recordset in the datasource.

4.3.3. Events

PropertyChanged

void PropertyChanged(BSTR PropertyName);

Change of an Online object property

PropertyName is the name of the changed property.

DataMemberChanged

void DataMemberChanged(int IDConnect, BSTR Member);

Change of the recordset in the datasource. To get an indicator of the changed recordset (IDispatch interface) use the GetDataMember method. The event is activated upon creation of a recordset (usually after the FORMAT event).

Member is the name of the changed recordset in the datasource.

Connected

void Connected(int IDConnect);

Connection to a table with the IDConnect identifier is established.

Disconnected

void Disconnected(int IDConnect);

Connection to a table with the IDConnect identifier is broken.

Synchronized

void Synchronized(int IDConnect);

Database application table (IDConnect connection) is synchronized with the local database of the RTS DataServer (rtsds.exe).

Error

void Error(int IDConnect, BSTR Description);

Message from the DataServer about a connection parameters error, Description – additional information.

Clear

void Clear(int IDConnect);

Cleaning of the data received through the IDConnect connection is performed.

Format

void Format(int IDConnect, int NumberOfFields, BSTR FormatOfFields);

Message about the format of the received data.

Parameters:

IDConnect
is the connection identifier;

NumberOfFields
is the number of column in the connection determining the length of lists in AddRow, DeleteRow, UpdateRow events;

FormatOfFields
is the data format (for example, "u4,c10,c255,d10.5").

AddRow

void AddRow(int IDConnect, int IDRecord, VARIANT Fields);

Database record is received.

Parameters:

IDConnect
is the connection identifier;

IDRecord
is the record identifier;

Fields
contains field values as an array of BSTRs.

UpdateRow

void UpdateRow(int IDConnect, int IDRecord, VARIANT Fields);

Database record is updated.

Parameters:

IDConnect
is the connection identifier;

IDRecord
is the record identifier;

Fields
 contains new field values as an array of BSTRs.

DeleteRow

void DeleteRow(int IDConnect, int IDRecord);

Database record is deleted. The user might get a DELETEROW message with the ID of a record which was not added to the local database of the user (because it was empty), in other words the user did not receive an AddRow message with this ID.

Parameters:

IDConnect
is the connection identifier;

IDRecord
is the record identifier.

ReplBegin

void ReplBegin(int IDConnect);

Beginning of a database table replication.

ReplEnd

void ReplEnd(int IDConnect);

A database table replication is completed. A table of the application database (IDConnect connection) is synchronized with the Trading System database. For the further database synchronization with the dynamic connection process AddRow, UpdateRow и DeleteRow events.
4.3.4. Using Online object

The procedure of receiving data from a TS table comprises the following stages:

1. Establishing connection with the TS with the help of the Connection object.

2. Creation of an Online object and filling in the fields which determine the table, fields, key information and sorting and filtering parameters.

3. Calling of the Open method.

4. Analysis of the return code. Message processing.

5. Closing connection to the table with the Close method. Deleting unnecessary objects and in some cases closing connection to the TS.
4.3.5. Notes of the IDataSource Interface implementation

To use the IDataSource support install MDAC libraries of version 2.5 (but not older). This library version is included in the Windows 2000 operating system. If you have Windows NT 4.0 you can download MDAC 2.5 at the following address: http://www.microsoft.com/data/.
1. FilterClause, MaxRecords and SortClause properties do not influence on the composition and order of records coming in Add/Update/Delete Row events. Only the KeyField, FilterMin, FilterMax properties influence the composition of these events. When the data is scanned with the DataSource methods (i.e. when the contents of the Recordset object are scanned), the data will be filtered according to the FilterClause, MaxRecords and SortClause properties.
2. The user can scan the data and work with the RecordSet object upon receipt of the DataMemberChanged event.

3. When the client receives an AddRow event, an appropriate record is already entered in the RecordSet,certainly, if it conforms to the filtering conditions set by FilterClause and MaxRecords properties.

4. The user can learn about the changes in the filtered data intercepting events of the RecordSet object, for example, RecordChangeComplete. For a detailed description of the RecordSet object see http://msdn.microsoft.com/library/default.asp?URL=/library/psdk/dasdk/ados4piv.htm or the MSDN library.
4.4. Scheme, SchemeDO

Allow the user to get the database scheme structure: table list, column names and data format.

4.4.1. Methods

VARIANT_BOOL GetScheme();

Note: Open() and Close(), standard and avowed library methods, are not used in this object.

Function

Gets the structure of the database scheme.

Parameters

No

Returned Value

Returns TRUE or FALSE depending on the efficiency of the method.

Events

FoundTable

void FoundTable(int IDConnect, BSTR TableName);

New table.

TableName
is a table name.

FoundColumn

void FoundColumn(int IDConnect, BSTR TableName, BSTR ColumnName, BSTR ColumnFormat);

New column.

TableName
is a table name.

ColumnName
is a column name.

ColumnFormat
is the column data format.

SchemeCompleted

void SchemeCompleted(int IDConnect);

A complete data scheme is received.

4.4.2. Using Scheme object

To receive the database scheme the user should:

1. Connect to the DataServer module.

2. If a visual SchemeDO object is not used, create a Scheme object.

3. Call the GetScheme method.

4. Process messages, analyze the return code.

5. Delete unnecessary objects, close the connections of the Connection object.

5. References

	1.
	RTSComm communication server
	"TS_RTSComm_ModDescrip_Public.doc"

	2.
	RTS Plaza database structure
	"TS_DataBase_Public_en.doc"

	3.
	RTS Plaza Online API
	"TS_RTSOnline_API_Public_en.doc"

PAGE
2

